skip to main content


Search for: All records

Creators/Authors contains: "Powers, John M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In ecological speciation, incipient species diverge due to natural selection that is ecologically based. In flowering plants, different pollinators could mediate that selection (pollinator-mediated divergent selection) or other features of the environment that differ between habitats of 2 species could do so (environment-mediated divergent selection). Although these mechanisms are well understood, they have received little rigorous testing, as few studies of divergent selection across sites of closely related species include both floral traits that influence pollination and vegetative traits that influence survival. This study employed common gardens in sites of the 2 parental species and a hybrid site, each containing advanced generation hybrids along with the parental species, to test these forms of ecological speciation in plants of the genus Ipomopsis. A total of 3 vegetative traits (specific leaf area, leaf trichomes, and photosynthetic water-use efficiency) and 5 floral traits (corolla length and width, anther insertion, petal color, and nectar production) were analyzed for impacts on fitness components (survival to flowering and seeds per flower, respectively). These traits exhibited strong clines across the elevational gradient in the hybrid zone, with narrower clines in theory reflecting stronger selection or higher genetic variance. Plants with long corollas and inserted anthers had higher seeds per flower at the Ipomopsis tenuituba site, whereas selection favored the reverse condition at the Ipomopsis aggregata site, a signature of divergent selection. In contrast, no divergent selection due to variation in survival was detected on any vegetative trait. Selection within the hybrid zone most closely resembled selection within the I. aggregata site. Across traits, the strength of divergent selection was not significantly correlated with width of the cline, which was better predicted by evolvability (standardized genetic variance). These results support the role of pollinator-­mediated divergent selection in ecological speciation and illustrate the importance of genetic variance in determining divergence across hybrid zones.

     
    more » « less
    Free, publicly-accessible full text available November 23, 2024
  2. Abstract Background and Aims

    Floral volatiles, visual traits and rewards mediate attraction and defence in plant–pollinator and plant–herbivore interactions, but these floral traits might be altered by global warming through direct effects of temperature or longer-term impacts on plant resources. We examined the effect of warming on floral and leaf volatile emissions, floral morphology, plant height, nectar production, and oviposition by seed predators.

    Methods

    We used open-top chambers that warmed plants in the field by +2–3 °C on average (+6–11 °C increase in daily maxima) for 2–4 weeks across 1–3 years at three sites in Colorado, USA. Volatiles were sampled from two closely related species of subalpine Ipomopsis with different pollinators: Ipomopsis aggregata ssp. aggregata, visited mainly by hummingbirds, and Ipomopsis tenuituba ssp. tenuituba, often visited by hawkmoths.

    Key Results

    Although warming had no detected effects on leaf volatiles, the daytime floral volatiles of both I. aggregata and I. tenuituba responded in subtle ways to warming, with impacts that depended on the species, site and year. In addition to the long-term effect of warming, temperature at the time of sampling independently affected the floral volatile emissions of I. aggregata during the day and I. tenuituba at night. Warming had little effect on floral morphology for either species and it had no effect on nectar concentration, maximum inflorescence height or flower redness in I. aggregata. However, warming increased nectar production in I. aggregata by 41 %, a response that would attract more hummingbird visits, and it reduced oviposition by fly seed predators by ≥72 %.

    Conclusions

    Our results suggest that floral traits can show different levels of plasticity to temperature changes in subalpine environments, with potential effects on animal behaviours that help or hinder plant reproduction. They also illustrate the need for more long-term field warming studies, as shown by responses of floral volatiles in different ways to weeks of warming vs. temperature at the time of sampling.

     
    more » « less
  3. Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet , which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common. 
    more » « less
  4. Abstract

    Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow‐dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits ofIpomopsis aggregataover 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies onI. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow‐dominated ecosystems.

     
    more » « less
  5. Summary

    Vegetative traits of plants can respond directly to changes in the environment, such as those occurring under climate change. That phenotypic plasticity could be adaptive, maladaptive, or neutral.

    We manipulated the timing of spring snowmelt and amount of summer precipitation in factorial combination and examined responses of specific leaf area (SLA), trichome density, leaf water content (LWC), photosynthetic rate, stomatal conductance and intrinsic water‐use efficiency (iWUE) in the subalpine herbIpomopsis aggregata. The experiment was repeated in three years differing in natural timing of snowmelt. To examine natural selection, we used survival, relative growth rate, and flowering as fitness indices.

    A 50% reduction in summer precipitation reduced stomatal conductance and increased iWUE, and doubled precipitation increased LWC. Combining natural and experimental variation, earlier snowmelt reduced soil moisture, photosynthetic rate and stomatal conductance, and increased trichome density and iWUE. Precipitation reduction reversed the mortality selection favoring high stomatal conductance under normal and doubled precipitation, and higher LWC improved growth.

    Earlier snowmelt is a strong signal of climate change and can change expression of leaf morphology and gas exchange traits, just as reduced precipitation can. Stomatal conductance and SLA showed adaptive plasticity under some conditions.

     
    more » « less